If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+19y=0
a = 8; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·8·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*8}=\frac{-38}{16} =-2+3/8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*8}=\frac{0}{16} =0 $
| 8/3x=-4/15 | | 61x+61x=60+60 | | 61x+61x=60=60 | | 2(3)-y=14 | | X+x2+x3=270 | | 3s=75 | | Y+3=x+8 | | 23-3z=-9(4z+6) | | 3h^2=75 | | 70-19v=-16v+10 | | 6+-5x=-29 | | 45=y/4=17 | | 2(2w+4)=24 | | 5(u+2)=8u+16 | | 6(12)=j | | Y=1.5(2)+b | | 35/2=7/x | | 2y-20=4(y-7) | | 4b-20=8(3b+5) | | 6-2y+1=6-2y+1 | | 86=q+8 | | 4(v-4)=-6v+14 | | 8x+9=12x-18 | | x+53+x+138=180 | | 6(x+7)+5=47 | | s^2+121-22s=0 | | −2x=26 | | 1.3x-0.8x(x-5)=0.5(x-8) | | x+53+x+135=180 | | -1/2x=-3x+5 | | 3(u-4)+2u=-17 | | 9x+45=-3-39 |